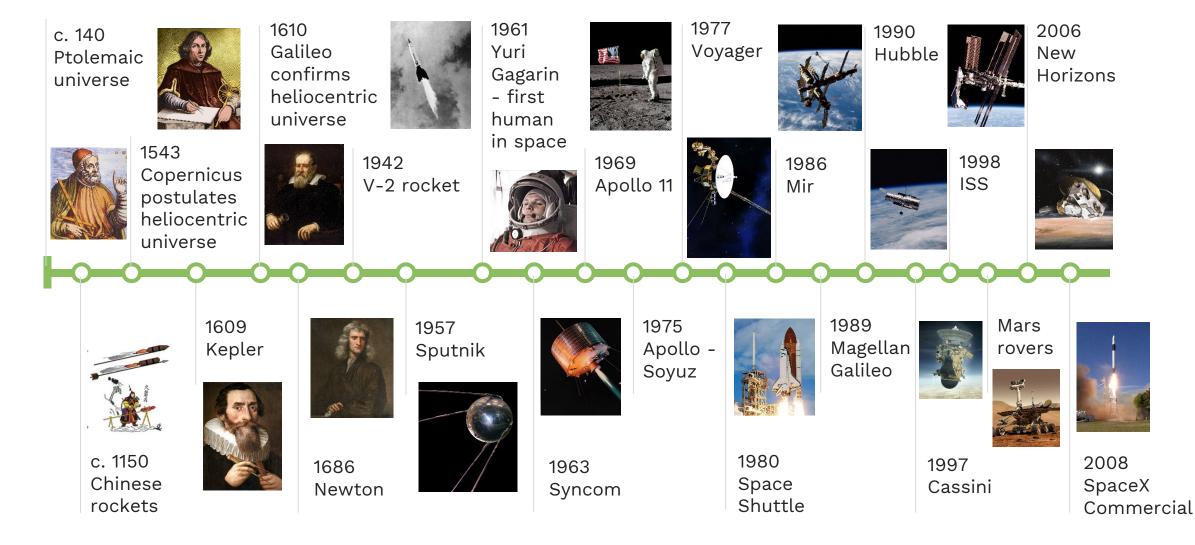


Provided by Interstellar Communication Holdings Inc.

Interstellar Ventures: the Past, Present, and Future of Space Exploration

Mar 2024

Disclaimer

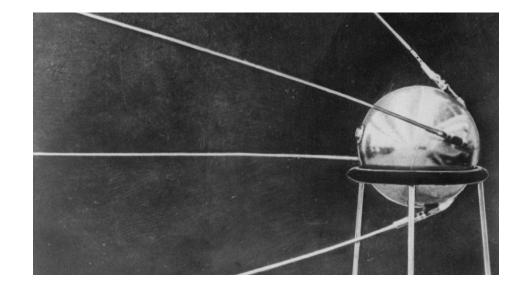

This report is only for informational purposes and does not purport to make any forecasts or predictions and nothing in this report should be construed as doing so. It is merely intended to help investors better understand the industry in a research report format.

Interstellar Communication Holdings prepared the information in this report. Interstellar Communication Holdings has no obligation to inform you when information in this report changes.

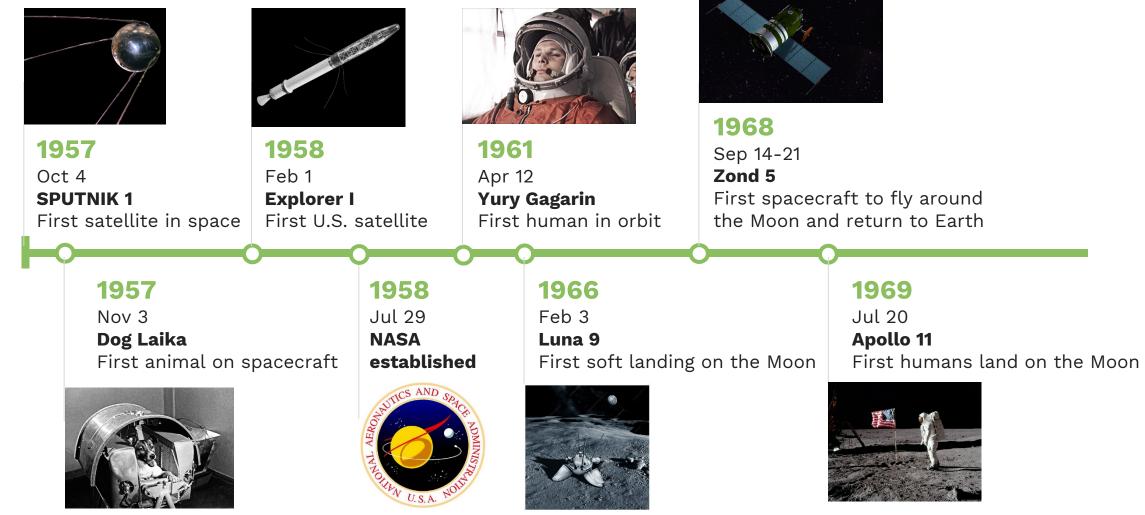
This report is for information purposes only. Under no circumstances is it to be used or considered as a solicitation to buy or sell any securities. While the information contained herein has been obtained from sources we believe to be reliable, Interstellar Communication Holdings does not represent that it is accurate or complete, and accordingly, should not be relied upon as such. Risk factors and actual results may differ significantly from the information contained herein. This report or any portion hereof may not be reprinted, sold, or redistributed without the written consent of Interstellar Communication Holdings Inc.

Copyright © Interstellar Communication Holdings Inc.

Timeline of Space Exploration

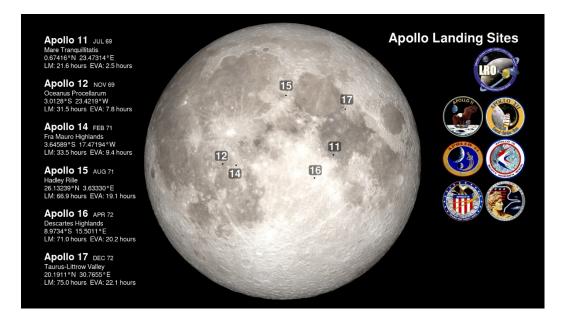

V-2 – The First Vehicle to Touch Space

- The V-2 rocket was developed by Wernher von Braun and his German team during WWII
- Single stage rocket fueled by liquid oxygen and alcohol
 - It was the first ballistic missile and first object to go into the **fringes of space**
 - The first launch occurred on October 3, 1942
 - After the war:
 - Most of the V-2 planning team (including von Braun) chose to surrender to the Americans
 - Much of the V-2 production team was captured by the Russians, setting the stage for the Space Race



Sputnik - 1957: The Dawn of Space Age

- Sputnik 1 was the first artificial Earth satellite. It was launched into an elliptical low Earth orbit by the Soviet Union on 4 October 1957.
- The 84 kg sphere ushered in the "Space Age"
- It sent a radio signal back to Earth for 21 days before its three silver-zinc batteries ran out and burned up on reentry on January 4, 1958.
- Its radio signal was easily detectable by amateur radio operators, and the 65° orbital inclination made its flight path cover virtually the entire inhabited Earth.


The Space Race: 1957-1969

Source: Encyclopædia Britannica

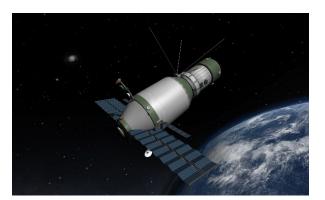
Apollo Missions: Moon Landings

- Apollo was a project conducted by NASA in the 1960s and 1970s that landed the first humans on the Moon.
- The Apollo program funding accounted for 48% of the NASA budget from 1962-73, a total of \$19,408,134,000.
- Apollo 1: On January 27, 1967, during testing for launch, fire swept through the command module killing Grissom, White, and Chaffee.
- Apollo 11: On July 20, 1969, Armstrong and Aldrin are first two men to set foot on the Moon

 In all, 12 men walked on the Moon during the Apollo program. Total of 12 days and 12 hours spent on the Moon by humans over 6 Apollo missions. Total of 3 days and 18 hours spent walking on the Moon in 14 moonwalks.

Space Stations – 1970's thru 1990's

Name	Launched	Reentered	Days in orbit	Days occupied	Total crew and visitors	Mass (* = at launch)	Pressurized volume
Salyut 1	Apr 19, 1971	Oct 11, 1971	175	24	6	18,425 kg (40,620 lb)	100 m³ (3,500 cu ft)
Skylab	May 14,1973	Jul 11, 1979	2249	171	9	77,088 kg (169,950 lb)	360 m³ (12,700 cu ft)
Salyut 3	Jun 25,1974	Jan 24, 1975	213	15	2	18,900 kg (41,700 lb)	90 m³ (3,200 cu ft)
Salyut 4	Dec 26, 1974	Feb 3, 1977	770	92	4	18,900 kg (41,700 lb)	90 m³ (3,200 cu ft)
Salyut 5	Jun 22, 1976	Aug 8, 1977	412	67	4	19,000 kg (42,000 lb)	100 m³ (3,500 cu ft)
Salyut 6	Sep 29,1977	Jul 29, 1982	1764	683	33	19,000 kg (42,000 lb)	90 m³ (3,200 cu ft)
Salyut 7	Apr 19, 1982	Feb 7, 1991	3216	861	22	19,000 kg (42,000 lb)	90 m³ (3,200 cu ft)
Mir	Feb 19, 1986	Mar 23, 2001	5511	4594	125	129,700 kg (285,900 lb)	350 m ³ (12,400 cu ft)

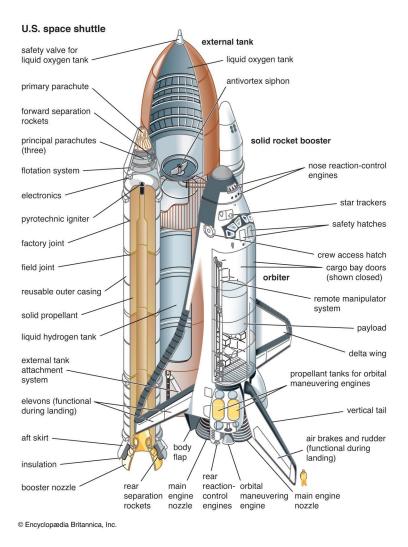

Space Stations – 1970's thru 1990's continued

Salyut 1, 1971

Skylab, 1973

Salyut 3, 1975

Salyut 7, 1982


Mir, 1986

The Space Shuttle – 1981-2011

The Space Shuttle was the world's **first reusable spacecraft**, and the first spacecraft in history that can carry large satellites both to and from orbit.

From the first launch on **April 12, 1981** to the final landing on **July 21, 2011**, NASA's space shuttle fleet executed **135 missions**, involving a collective 852 shuttle fliers and accumulating a total mission time of 1,323 days.

Commencing with Columbia and progressing through Challenger, Discovery, Atlantis, and Endeavour, the spacecraft successfully conducted operational missions. These included launching numerous satellites, interplanetary probes, and the **Hubble Space Telescope** (HST), performing science experiments in orbit, collaborating in the Shuttle-Mir program with Russia, and contributing to the construction and servicing of the **International Space Station** (ISS).

Vehicles that Propel Us Beyond

USA Licht		Payload to LEO	First Launch	No. Launches
Light ABL Space Systems	RS1	2,980	2023	2
Rocket Lab Firefly Aerospace Medium	Electron Alpha	660 2,580	2017 2021	38 2
Northrop Grumman SpaceX ULA	Antares Falcon 9 block 5 Atlas V	18,000 22,800 42,000	2013 2018 2002	18 190 97
Heavy ULA ULA SpaceX SpaceX Blue Origin	Delta IV Vulcan Centaur Falcon Heavy Starship New Glenn	64,000 56,000 141,000 550,000 99,000	2004 2023? 2018 2023 2024?	15 0 7 1 0
Europe Light Avio Heavy Arianspace	Vega Ariane 6	Payload to LEO 2,200 47,730	First Launch 2022 2024?	No. <u>Launches</u> 22 0
Russia Light		Payload to_LEO	First Launch	No. Launches
Krunichev Medium TsSKB-Progress Heavy	Angara 1.2 Soyuz 2	3,500 18,100	2022 2006	2 162
Krunichev	Angara 5	54,000	2014	3

China	*)	Payload to LEO	First Launch	Launches			
Light Galactic Energy	Ceres 1	900	2020	7			
CALT Medium	Long March 11	1,500	2005	16			
LandSpace Heavy	Zhuque-2	13,000	2022	2			
CALT	Long March 8	19,000	2020	2			
Japan Light		Payload to LEO	First Launch	No. Launches			
IHI Aerospace Medium	Epsilon	3,300	2013	6			
Mitsubishi Mitsubishi	HII-A H3	24,000 62,400	2001 2023	46 1			
India Light SSLV Medium	۲	Payload <u>to LEO</u> 1,100	First Launch 2022	No. Launches 2			
ISRO Heavy	PSLV	8,400	1993	58			
ISRO	LVM-3	18,000	2017	7			
Others Israel, Iran, North Korea, South Korea 77 countries have space agencies - 16 have launch capabilities							

Six Massive New Rockets Coming Online

	NASA	SPACEX		BLUE ORIGIN	27	Consa
	NASA	SpaceX	ULA	Blue Origin	Arianespace	China
First launch	SLS 2023	Starship 2023	Vulcan 2024	New Glenn 2024?	Ariane 6 2024?	Long March 9 2033?
LEO	154,000	550,000	60,000	99,000	47,730	330,000

Cargo Vehicles

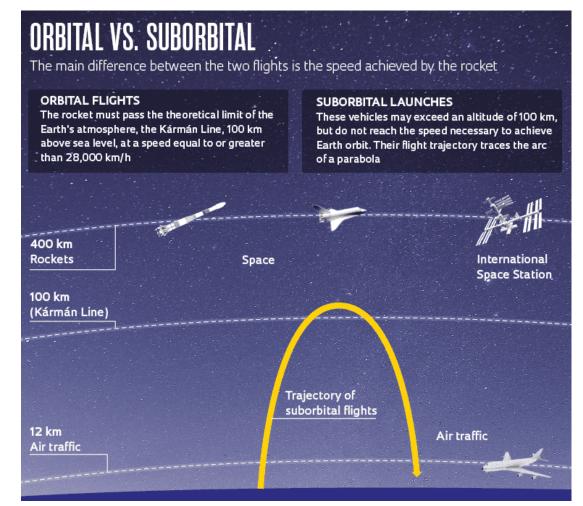
Retired	Vehicle	Manufacturer	Capacity (lbs)
ESA	ATV	Aérospatiale	16,900
Japan	HTV	JAXA	13,700
USA	Shuttle	Rockwell	36,000
Operational			
USSR/Russia	Progress	Energia	5,300
USA	Dragon 1/2	SpaceX	7,300
USA	Cygnus	Northrop Grumman	8,300
China	Tianzhou	CAST	16,300
Planned			
USA	Dream Chaser	Sierra Space	12,000
Japan	HTV-X	ISS resupply - first launch 2024	6,000
	HTV-XG	Lunar Gateway resupply	?
USA	Dragon XL	SpaceX	11,000
		Lunar Gateway resupply	

Manned Spacecraft

United States					Russia			
Retired				Crew	Retired			Crew
			26 missions, 6					
Mercury			manned	1	Vostok		15 missions, 6 manned	1
1959 -	1963				1961 -	1963		
			13 missions, 11					
Gemini			manned	2	Voskhod		5 missions, 2 manned	1
1964 -	1966				1964 -	1965		
Apollo			21 missions, 10 manned - 6 lunar, 3 Skylab and	3	Buran		1 unmanned mission	10
1966 -	1975		1 Soyuz docking		1988 -	1988	similar to US space shuttle	
			135 missions, all manned - 2 fatal				'	
Shuttle			crashes	7	Operational			
1981 -	2011				Soyuz		177 missions, 151 manned	3
Operational					1967 - pres	ent		
SpaceX		Dragon 2						
		Ŭ	11 missions, 10					
2019 -	present		manned		China			
Boeing		Dreamliner		4	Operational			
			2 unmanned missions, first manned mission in					
2019 -	present		2024		Shenzhou	Sher	nzhou 15 missions, 11 manned	3
NASA		Orion		4	1999 - Pres	ent		
			2 unmanned missions, first manned mission in					
2014 -	present		2024					
Blue Origin		New Shepherd		6	India			
			17 unmanned missions, 6 manned					
2015 -		: sub-orbital	missions		<u> Planned</u>			
Virgin Galactic		Spaceship			Gaganyaan	Gaga	anyaan 2 unmanned missions planned for 2024	, 3
			63 missions, 7 reached space, 1 fatal					
2018 -	present	: sub-orbital	crash		2024 - pres	ent	first manned mission in 2025	
Planned								
Sierra Space		Dreamchaser						
2025? -			First cargo version flight planned for early 2024	7				
SpaceX		Starship						
			1 unmanned mission to date - did not achieve					
2023 -	present		orbit	100?				

Launch Types – Orbital vs Suborbital Launch

Orbital Launch

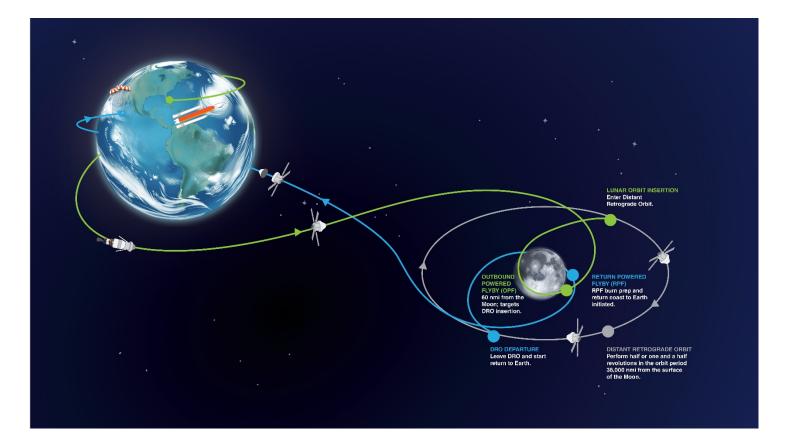

Purpose: To place payloads, such as satellites or spacecraft, into orbit around a celestial body, typically Earth.

Characteristics: Requires achieving sufficient velocity to counteract gravity and enter stable orbit.

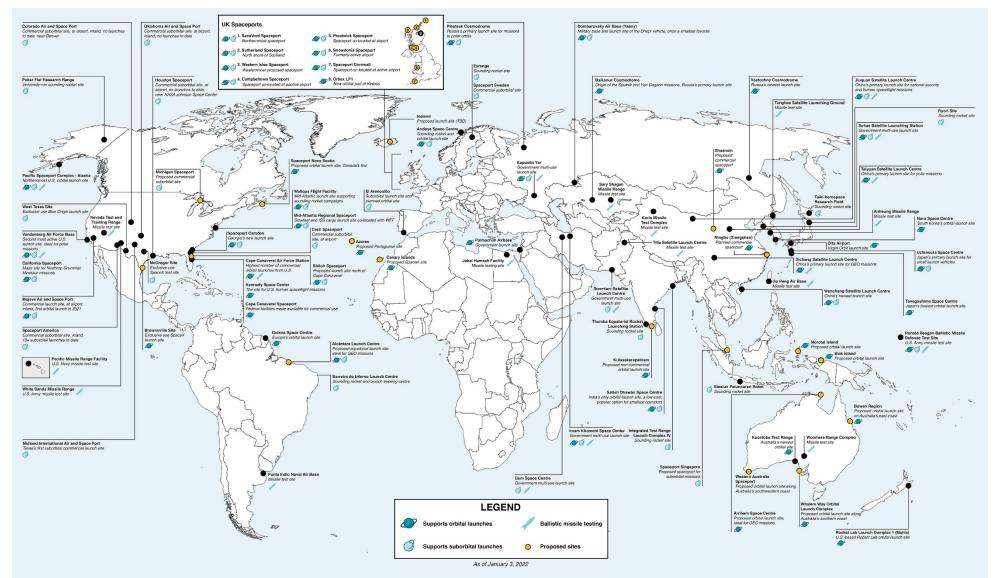
Suborbital Launch

Purpose: To reach the edge of space without achieving the velocity necessary for orbital insertion.

Characteristics: Parabolic trajectory, with the spacecraft briefly entering space before returning to Earth.



Launch Types - Escape Trajectory Launch


Escape Trajectory Launch

Purpose: To propel spacecraft out of the gravitational influence of a celestial body, such as Earth, towards interplanetary space.

Characteristics: Achieves the necessary velocity to escape the gravitational pull of the originating body.

Orbital and Suborbital Launch Sites of the World

Source: Bryce Tech

Two Space Stations in Orbit, 8 More Are Planned

Retired				Planned	_	8 announced – 6 LEO, 2 lunar
Salyut 1- 7	Soviet Union	1971	1991	Orbital Reef	USA \$130 million in NASA funding	Blue Origin, Boeing, Sierra and Redwire
MIR	Soviet Union	1986	2001	Starlab	USA/Europe \$160 million in NASA funding	Voyager, Airbus, Nanoracks, and Lockheed Martin
Skylab	United States	1973	1979	Northrop Grumman	USA	Northrop, Dynetics and Rhodium.
Tiangong 1	China	2011	2018	Axiom	USA	starting in 2025, plan to adds modules to ISS and then detach already launching human missions via
Currently On Orbit	2 on c	rbit now		Haven - 1	USA	SpaceX Vast purchased Falcon 9 launch for 2025 lunar Halo
	US/Russia/Japan/ Europe/Canada	1998	2030	Lunar Gateway	USA/Europe Japan/Canada	orbit first launch planned 2025 via Falcon Heavy
				Ross	Russia	2027 planned ISS replacement starting with some
Tiangong 2	China	2021	Present			newer ISS modules After 2030, lunar station
				LOS	Russia	planned

Space Stations – ISS & Tiangong

- ISS continuously occupied since 2000
 - Expedition 70 Crew of seven onboard
 - Thousands of scientific experiments/publications
- Decommissioning in 2030

- Tiangong Space Station
 - Assembly began April 2021
 - Currently three modules will be expanded to six starting in 2027
 - Facilities for biological, physical, material science
 - Shenzhou-17 crew of three now onboard

The Artemis Program – Return to the Moon

The Artemis program is a Moon exploration program that is led by the United States' NASA and was formally established in **2017** via **Space Policy Directive 1**. The Artemis program is intended to reestablish a human presence on the Moon for the first time since Apollo 17 in 1972. The program's stated long-term goal is to **establish a permanent** base on the Moon to facilitate human missions to Mars.

The Artemis Program – Space Launch System

The Artemis program is organized around a series of **Space Launch System (SLS)** missions. These space missions will increase in complexity and are scheduled to occur at intervals of a year or more. NASA and its partners have planned Artemis 1 through Artemis 5 missions; later Artemis missions have also been proposed. Each SLS mission centers on the launch of an SLS launch vehicle carrying an **Orion spacecraft**. Missions after Artemis 2 will depend on support missions launched by other organizations and spacecraft for support functions.

The Artemis Program – The Missions

Artemis I

Launched: Nov. 16, 2022

- Flyby mission to the moon and back
- Will certify the Space Launch System, the world's most powerful rocket
- Carries no astronauts
- The Orion spaceship section carries test manikins instead of astronauts

Artemis II Launch target: 2024

- Crewed mission with four astronauts in the
- Orion spacecraftWill orbit the moon and return

Artemis III Launch target: 2025

- Will land astronauts on the moon
- Will use the SpaceX Starship Human Landing System to ferry astronauts and payload from lunar orbit to the Moon's surface and back

Artemis IV

Launch target: 2027

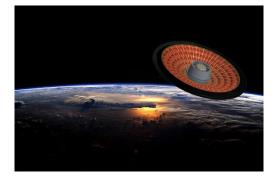
- No lunar landing
- Will deliver the I-Hab (International Habitation Module) for the planned Gateway space station in lunar orbit; the l-Hab will provide a living and work space for astronauts in the station, and will be built by the European Space Agency and the Japan Aerospace Exploration Agency

Artemis V

Launch target: 2028

- Will land astronauts on the moon
- Will deliver the Lunar Terrain Vehicle, allowing astronauts to drive on the lunar surface
- Will rendezvous with the Gateway space station orbiting the moon, adding at least one module to the station

Humans to Mars


NASA is advancing many technologies to send astronauts to Mars as early as the 2030s. Here are six things scientists are working on right now to make future human missions to the Red Planet possible.

Advanced Propulsion Systems

A Home and Lab on Wheels

Inflatable Landing Gear

Surface Power Systems

High-tech Spacesuits

Laser Communications

Future Trends in Space Exploration - ISAM

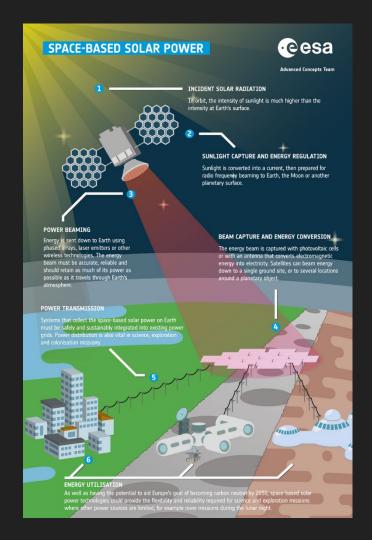
Robots are revolutionizing space by enabling tasks such as extending satellite lifespans, assembling telescopes, and servicing spacecraft, with a focus on foundational capabilities like **In-Space Servicing**, **Assembly**, **and Manufacturing (ISAM)**.

Assembly

- Brings together separate parts in space to create functional structures.
- Overcomes rocket fairing volume limitations, enabling construction of large telescopes and habitats.

Servicing

- Extends satellite lifespan through refueling, repair, and upgrades.
- Ends the era of one-and-done spacecraft, enabling adaptability to evolving technology



Manufacturing

- Fabricates components in space as needed, increasing adaptability.
- Reduces reliance on launching contingency components and allows for the production of large, jointless structures.
- Enables on-orbit coating applications and nanomanufacturing for optical and thermal property recovery.

Future Trends in Space Exploration - Space Based Solar Power

Space-based solar power holds immense promise for sustainable energy solutions. With sunlight being over ten times more intense at the top of the atmosphere compared to the Earth's surface, harnessing solar energy in space presents an unparalleled opportunity. By deploying collection systems in high orbits where sunlight is continuously available, space-based solar power systems could capture and transmit solar energy wirelessly to receiving stations on Earth. This innovative approach not only offers a reliable and abundant source of energy but also has the potential to supplement terrestrial power transmission **infrastructure**, particularly in remote areas, thus paving the way for a greener and more sustainable future.

Future Trends in Space Exploration – Technological Evolution

Autonomous Rovers

- AI-driven autonomous navigation enables rovers like NASA's Curiosity and Perseverance to safely traverse Martian terrain.
- Sensors detect hazards, while AI analyzes data to determine optimal paths.
- NASA's Perseverance utilizes AI software, AEGIS, to gather data on Martian features, enhancing our understanding of the planet's composition.

Satellite Operations

- AI facilitates efficient satellite operations, including collision avoidance.
- SpaceX's Starlink satellites utilize AI for real-time detection of orbital hazards and adaptive maneuvering to ensure safe navigation.

Future Trends in Space Exploration - Technological Evolution II

Data Analysis

- AI algorithms enhance data analysis from space missions, enabling precise identification, classification, and predictive analysis.
- Machine learning models identify patterns, classify celestial objects, and detect anomalies, accelerating our understanding of the universe.

Rocket Landing

- AI integration improves rocket landing precision.
- SpaceX employs AI systems to analyze sensor data and adjust trajectory in real-time, ensuring optimal landing positioning.

Galaxy Mapping

- AI enables precise star and galaxy mapping, enhancing astronomers' understanding of celestial bodies.
- NASA's Kepler telescope uses AI to detect planet candidates through subtle light fluctuations, aiding in future exploration missions and understanding galactic behavior over time.

Future Trends in Space Exploration - Suborbital Space Tourism

Suborbital space tourism has become an increasingly captivating prospect, providing an accessible and thrilling opportunity for individuals to venture beyond Earth's atmosphere and experience the wonders of space firsthand.

High Altitude Balloons

- World View (US)
- Zephalto (FR)
- Space Perspective (US)

Suborbital Flights

- Blue Origin (US)
- Virgin Galactic (US)

Point-to-Point Suborbital Transportation

- Space Transportation (CN)
- SpaceX (US)

How Normal People Can Explore and Enjoy Space I

Stargazing

Connect with local astronomy clubs, planetariums, or observatories for opportunities to observe celestial wonders.

Citizen Science Projects

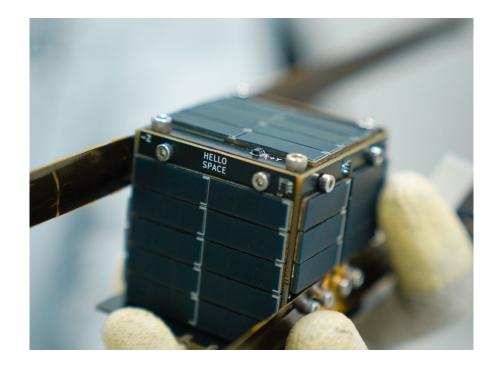
Engage in scientific research by contributing to projects like Galaxy Zoo or NASA's Globe Observer.

How Normal People Can Explore and Enjoy Space II

Send your DNA to the Moon

Participate in a space-time capsule program to immortalize your DNA on the lunar surface.

Beam a song to space


Transmit your favorite music to orbit the Earth aboard the International Space Station, creating a unique connection with space.

How Normal People Can Explore and Enjoy Space III

Space tour

Embark on an unforgettable space travel experience by booking a space tour.

Own a personal satellite

Launch a PocketQube satellite into space, gaining access to your very own piece of the cosmos.

"Keep Looking Up" was my life's admonition, I can do little else in my present position. –Jack Horkheimer

THANK YOU

arphi icMercury

Interstellar Communication Holdings Inc. 4201 Collins Ave. Suite 402, Miami Beach, FL 33140 USA Earth, Solar System, Milky Way, Laniakea

The Pale Blue Dot is a photograph of Earth taken Feb. 14, 1990, by NASA's Voyager 1 at a distance of 3.7 billion miles (6 billion kilometers) from the Sun.